Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(12): e0011763, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38150471

ABSTRACT

BACKGROUND: Transmission intensity for mosquito-borne diseases are highly heterogenous and multi-factorial. Understanding risk factors associated to disease transmission allow the optimization of vector control. This study sets out to understand and compare the combined anthropogenic and environmental risk factors of four major mosquito-borne diseases, dengue, malaria, chikungunya and Japanese encephalitis in Thailand. METHODS: An integrated analysis of mosquito-borne diseases, meteorological and ambient air pollutants of 76 provinces of Thailand was conducted over 2003-2021. We explored the use of generalized linear models and generalized additive models to consider both linear and non-linear associations between meteorological factors, ambient air pollutants and mosquito-borne disease incidence. Different assumptions on spatio-temporal dependence and nonlinearity were considered through province-specific and panel models, as well as different spline functions. Disease-specific model evidence was assessed to select best-fit models for epidemiological inference downstream. RESULTS: Analyses indicated several findings which can be generally applied to all diseases explored: (1) higher AH above mean values was positively associated with disease case counts (2) higher total precipitation above mean values was positively associated with disease case counts (3) extremely high temperatures were negatively associated with disease case counts (4) higher SO2 and PM2.5 surface concentrations were negatively associated with disease case counts. However, the relationships between disease and RH, non-extreme temperatures and CO surface concentration were more mixed, with directions of associations changing across the different diseases considered. CONCLUSIONS: This study found protective and enhancing effects of meteorological and ambient air pollutant factors on mosquito-borne diseases burdens in Thailand. Further studies should employ these factors to understand and predict risk factors associated with mosquito-borne disease transmission.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Mosquito-Borne Diseases , Animals , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Pollutants/analysis , Thailand/epidemiology , Temperature
2.
Viruses ; 15(9)2023 09 13.
Article in English | MEDLINE | ID: mdl-37766323

ABSTRACT

Singapore experiences endemic dengue. Vector control remains the primary means to reduce transmission due to the lack of available therapeutics. Resource limitations mean that vector-control tools need to be optimized, which can be achieved by studying risk factors related to disease transmission. We developed a statistical modelling framework which can account for a high-resolution and high-dimensional set of covariates to delineate spatio-temporal characteristics that are associated with dengue transmission from 2014 to 2020 in Singapore. We applied the proposed framework to two distinct datasets, stratified based on the primary type of housing within each spatial unit. Generalized additive models reveal non-linear exposure responses between a large range of ecological and anthropogenic factors as well as dengue incidence rates. At values below their mean, lesser mean total daily rainfall (Incidence rate ratio (IRR): 3.75, 95% CI: 1.00-14.05, Mean: 4.40 mm), decreased mean windspeed (IRR: 3.65, 95% CI: 1.87-7.10, Mean: 4.53 km/h), and lower building heights (IRR: 2.62, 95% CI: 1.44-4.77, Mean: 6.5 m) displayed positive associations, while higher than average annual NO2 concentrations (IRR: 0.35, 95% CI: 0.18-0.66, Mean: 13.8 ppb) were estimated to be negatively associated with dengue incidence rates. Our study provides an understanding of associations between ecological and anthropogenic characteristics with dengue transmission. These findings help us understand high-risk areas of dengue transmission, and allows for land-use planning and formulation of vector control policies.


Subject(s)
Dengue , Humans , Incidence , Singapore/epidemiology , Anthropogenic Effects , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...